Pielęgniarstwo i Zdrowie Publiczne

Piel. Zdr. Publ.
Index Copernicus (ICV) – 69,56
Ogólny współczynnik odrzuceń – 24,41%
ISSN 2082-9876 (print)
ISSN 2451-1870 (online)
Periodyczność – kwartalnik

Pobierz oryginał (PL) Pobierz tłumaczenie (EN)

Pielęgniarstwo i Zdrowie Publiczne Nursing and Public Health

2020, tom 10, nr 4, październik-grudzień, str. 277–282

doi: 10.17219/pzp/122026

Typ publikacji: praca poglądowa

Język publikacji: polski

Licencja: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Pobierz cytowania:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Fenyloketonuria nietypowa – ponad 60 lat badań po odkryciu tetrahydrobiopteryny

Atypical phenylketonuria: Over 60 years from the discovery of tetrahydrobiopterin

Kamil Konrad Hozyasz1,A,B,C,D,E,F

1 Wydział Nauk o Zdrowiu, Państwowa Szkoła Wyższa im. Papieża Jana Pawła II w Białej Podlaskiej, Biała Podlaska, Polska

Streszczenie

Fenyloketonuria po raz pierwszy została opisana i zdefiniowana biochemicznie w 1934 r. przez Norwega Ivara Asbjørna Føllinga. Choroba ta jest dziedziczonym autosomalnie recesywnie zaburzeniem metabolizmu powodowanym przez mutację genu kodującego hydroksylazę fenyloalaninową, przekształcającego fenyloalaninę w tyrozynę. W latach 60. XX w. Guthrie stworzył test przesiewowy w kierunku hiperfenyloalaninemii. Fenyloketonuria stała się pierwszą chorobą diagnozowaną we wczesnym stadium przed wystąpieniem objawów klinicznych dzięki populacyjnemu badaniu przesiewowemu noworodków. Tetrahydrobiopteryna (BH4) jest niezbędnym kofaktorem dla różnych enzymów, w tym hydroksylazy fenyloalaninowej. Poznano heterogenną grupę wrodzonych zaburzeń metabolizmu BH4 bez hiperfenyloalaninemii lub z nią (fenyloketonuria nietypowa). U części chorych na fenyloketonurię klasyczną podaż BH4 przywraca zdolność metabolizowania fenyloalaniny. Odkrycie BH4 przez Kaufmana przed 6 dekadami zaowocowało otwarciem nowych ważnych obszarów badań biologicznych i medycznych.

Abstract

Phenylketonuria was 1st described and defined biochemically in 1934 by Norwegian Ivar Asbjørn Følling. The disease is an autosomal recessive inborn error of metabolism caused by pathogenic variants in the gene encoding the enzyme phenylalanine hydroxylase that normally converts phenylalanine to tyrosine. In the 1960s, a diagnostic test was developed by Guthrie that enabled mass screening for hyperphenylalaninemia, and phenylketonuria became the first disease ever for which early presymptomatic diagnosis was possible due to population-based neonatal screening. The tetrahydrobiopterin (BH4) cofactor is essential for the activity of various enzymes, including phenylalanine hydroxylase. It is a heterogeneous group of inherited disorders in BH4 metabolism, presenting with (atypical phenylketonuria) or without hyperphenylalaninemia. Moreover, BH4 may promote the normal metabolism of phenylalanine in a subset of patients with classic phenylketonuria who are BH4-responsive. Thus, what started 6 decades ago as Kaufman’s discovery of the cofactor, has opened up novel and productive avenues of biological and medical research.

Słowa kluczowe

historia medycyny, fenyloketonuria nietypowa, tetrahydrobiopteryna

Key words

history of medicine, atypical phenylketonuria, tetrahydrobiopterin

Piśmiennictwo (45)

  1. Fan CH, Gu W, Wang J, Blumenfels YJ, El-Sayed Y, Quake SR. Non-invasive prenatal measurement of the fetal genome. Nature. 2012;487(7407):320–324. doi:10.1038/nature11251
  2. Brosco JP, Paul DB. The political history of PKU: Reflections on 50 years of newborn screening. Pediatrics. 2013;132(6):987–989. doi: 10.1542/peds.2013-1441
  3. Kaufman S. Overcoming a Bad Gene. Bloomington, IN: AuthorHouse; 2005.
  4. Kaufman S. Phenylalanine hydroxylation cofactor in phenylketonuria. Science. 1958;128(3337):1506–1508. doi:10.1126/science.128.3337.1506
  5. Kaufman S. A new cofactor required for the enzymatic conversion of phenylalanine to tyrosine. J Biol Chem. 1958;230(2):931–939. https://www.jbc.org/content/230/2/931.long. Dostęp 22.05.2020.
  6. Smith I, Lloyd J. Atypical phenylketonuria accompanied by a severe progressive neurological illness unresponsive to dietary treatment. Arch Dis Child. 1974;49(3):245. doi:10.1136/adc.49.3.245-b
  7. Bartholomé K. Letter: A new molecular defect in phenylketonuria. Lancet. 1974;2(7896):1580. doi:10.1016/s0140-6736(74)90337-7
  8. Smith I, Clayton BE, Wolff OH. New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction. Lancet. 1975;1(7916):1108–1111. doi:10.1016/s0140-6736(75)92498-8
  9. Kaufman S, Holtzman NA, Milstien S, Butler LJ, Krumholz A. Phenylketonuria due to a deficiency of dihydropteridine reductase. N Engl J Med. 1975;293(16):785–790. doi:10.1056/NEJM197510162931601
  10. Danks DM, Cotton RG, Schlesinger P. Letter: Tetrahydrobiopterin treatment of variant form of phenylketonuria. Lancet. 1975,306(7943):1043. doi:10.1016/s0140-6736(75)90335-9
  11. Blau N. Genetics of phenylketonuria: Then and now. Hum Mutat. 2016;37(6):508–515. doi:10.1002/humu.22980
  12. Danks DM, Cotton RG, Schlesinger P. Letter: Variants forms of phenylketonuria. Lancet. 1976;1(7971):1236–1237. doi:10.1016/s0140-6736(76)92179-6
  13. Milstein S, Orloff S, Spielberg S, et al. Hyperphenylalaninemia due to phenylalanine hydroxylase cofactor deficiency. Pediatr Res. 1977;11:460.
  14. Danks DM, Bartholome K, Clayton BE, et al. Malignant hyperphenylalaninemia: Current status (June 1977). J Inher Metab Dis. 1978;1(2):49–53. doi:10.1007/BF01801843
  15. Rasmussen C, Danks A. Double Helix, Double Joy: David Danks, the Father of Clinical Genetics in Australia. Melbourne, Australia: Melbourne University Press; 2010.
  16. Niederwieser A, Blau N, Wang M, et al. GTP cyclohydrolase 1 defieciency, a new enzyme defect causing hyperphenylalaninemia with neopterin, biopterin, dopamine, and serototonin deficiencies and muscular hypotonia. Eur J Pediatr. 1984;141(4):208–214. doi:10.1007/BF00572762
  17. Blau N, Dhondt JL, Guibaud P, Kuster T, Curtius HC. New variant of hyperphenylalaninaemia with excretion of 7-substituted pterins. Eur J Pediatr. 1988;148(2):176. doi:10.1007/BF00445941
  18. BIODEF: International Database of Tetrahydrobiopterin Deficiencies. www.biopku.org/home/biodef.asp. Dostęp 22.05.2020.
  19. Porta F, Ponzone A, Spada M. Long-term safety and effectiveness of pramipexole in tetrahydrobiopterin deficiency. Eur J Pediatr Neurol. 2016;20(6):839–842. doi:10.1016/j.ejpn.2016.08.006
  20. Cabalska B, Nowacka M, Nowaczewska I, Żekanowski C, Zorska K. Nietypowe postaci fenyloketonurii – efektywność leczenia. Med Wieku Rozw. 2002;6(3):193–202.
  21. Blau N, van Spronsen FJ. Disorders of phenylalanine and tetrahydrobiopterin metabolism. W: Blau N, Duran M, Gibson KM, Dionisi-Vici C, red. Physician’s Guide to the Diagnosis, Treatment, and Follow-up of Inherited Metabolic Diseases. Berlin, Heidelberg, Niemcy: Springer-Verlag; 2013;3–21.
  22. Blau N, Martinez A, Hoffmann GF, Thony B. DNAJC12 deficiency: A new strategy in the diagnosis of hyperphenylalaninemias. Mol Genet Metab. 2018;123(1):1–5. doi:10.1016/j.ymgme.2017.11.005
  23. van Spronsen FJ, Himmelreich N, Rüfenacht V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: From attention deficit to severe dystonia and intellectual disability. J Med Genet. 2017;55(4):249–253. doi:10.1136/jmedgenet-2017-104875
  24. Straniero L, Guella I, Cilia R, et al. DNAJC12 and Dopa-responsive nonprogressive Parkinsonism. Ann Neurol. 2017;82(4):640–646. doi:10.1002/ana.25048
  25. Anikster Y, Haack TB, Vilboux T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet. 2017;100(2):257–266. doi:10.1016/j.ajhg.2017.01.002
  26. He HL, Lee YE, Chen HP, et al. Overexpression of DNAJC12 predicts poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Exper Mol Pathol. 2015;98(3):338–345. doi:10.1016/j.yexmp.2015.03.029
  27. Jung-Kc K, Himmelreich N, Prestegard KS, et al. Phenylalanine hydroxylase variants interact with co-chaperone DNAJC12. Hum Mutat. 2019;40(4):483–494. doi:10.1002/humu.23712
  28. Feng Y, Liu S, Tang C, et al. Identification of an inherited pathogenic DNAJC12 variant in a patient with hyperphenylalalinemia. Clin Chim Acta. 2019;490:172–175. doi:10.1016/j.cca.2018.09.002
  29. Danecka MK, Woidy M, Zschocke J, Feillet F, Muntau AC, Gersting SW. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalized medicine in phenylketonuria. J Med Genet. 2015;52(3):175–185. doi:10.1136/jmedgenet-2014-102621
  30. Danecka MK. Molecular mechanisms of PAH function in response to phenylalanine and tetrahydrobiopterin binding: Implications for clinical management [rozprawa doktorska]. Monachium, Niemcy: Maximilians-Universität München; 2016. https://edoc.ub.uni-muenchen.de/19408/. Dostp 22.05.2020.
  31. Brennestuhl H, Jung-Klawitter S, Assmann B, Opladen T. Inherited disorders of neurotransmitters: Classification and practical approaches for diagnosis and treatment. Neuropediatrics. 2019;50(1):2–14. doi:10.1055/s-0038-1673630
  32. Matsubara Y, Gaull GE. Biopterin and neopterin in various milks and infant formulas. Am J Clin Nutr. 1985;41(1):110–112. doi:10.1093/ajcn/41.1.110
  33. Weinmann A, Post M, Pan J, et al. Tetrahydrobiopterin is present in high quantity in human milk and has a vasorelaxing effect on newborn rat mesenteric arteries. Pediatr Res. 2011;69(4):325–329. doi:10.1203/PDR.0b013e31820bc13a
  34. Durrer KE, Allen MS, von Herbing IH. Genetically engineered probiotic for the treatment of phenylketonuria (PKU): Assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS One. 2017;12(5):e0176286. doi:10.1371/journal.pone.0176286
  35. Belik J, Shifrin Y, Arning E, et al. Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice. Sci Rep. 2017;7:39854. doi:10.1038/srep39854
  36. Tong X, Liang P, Wu S, et al. Disruption of PTPS gene causing pale body color and lethal phenotype in the silkworm, Bombyx mori. Int J Mol Sci. 2018;19(4):E1024. doi:10.3390/ijms19041024
  37. van Wegberg AM, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162. doi:10.1186/s13023-017-0685-2
  38. Jones L, Goode L, Davila E, et al. Translational effects and coding potential of an upstream open reading frame associated with DOPA responsive dystonia. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1171–1182. doi:10.1016/j.bbadis.2017.03.024
  39. Frye RE, Slattery J. The potential role of nitrous oxide in the etiology of autism spectrum disorder. Transl Psychiatry. 2016;16(5):e812. doi: 10.1038/tp.2016.89
  40. Latremoliere A, Latini A, Andrews N, et al. Reduction of neuropathic and inflammatory pain through inhibition of tetrahydrobiopterin pathway. Neuron. 2015;86(6):1393–1406. doi:10.1016/j.neuron.2015.05.033
  41. Teraishi T, Kajiwara M, Hori H, et al. 13C-phenylalanine breath test and serum biopterin in schizophrenia, bipolar disorder and major depressive disorder. J Psychiatr Res. 2018;99:142–150. doi:10.1016/j.jpsychires.2018.01.019
  42. Sokoloff L. Seymour Kaufman 1924–2009. A Biographical Memoir. Waszyngton, DC: National Academy of Sciences; 2010.
  43. Tabata H, Hasegawa T, Nakagoshi M, et al. Occurrence of biopterin in the wings of Morpho butterflies. Experientia. 1996;52(1):85–87. doi:10.1007/BF01922422
  44. Nöthiger R. Ernst Hadorn, a pioneer of developmental genetics. Int J Dev Biol. 2002;46(1):23–27.
  45. Hozyasz KK. 80-lecie fenyloketonurii. Część III: Charles E. Dent – biochemik-naukowiec i klinicysta, który dostrzegł piętno choroby matki u potomstwa i zrutynizował badanie profilu aminokwasów. Pediatr Pol. 2017;92(3):352–359. doi:10.1016/j.pepo.2017.01.002