Pielęgniarstwo i Zdrowie Publiczne

Piel. Zdr. Publ.
Index Copernicus (ICV) – 69,56
Ogólny współczynnik odrzuceń – 24,41%
ISSN 2082-9876 (print)
ISSN 2451-1870 (online)
Periodyczność – kwartalnik

Pobierz oryginał (EN)

Pielęgniarstwo i Zdrowie Publiczne Nursing and Public Health

2019, tom 9, nr 2, kwiecień-czerwiec, str. 107–112

doi: 10.17219/pzp/102439

Typ publikacji: praca poglądowa

Język publikacji: angielski

Pobierz cytowania:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Bile acids and their role in functional gastrointestinal disorders

Kwasy żółciowe i ich rola w zaburzeniach czynnościowych przewodu pokarmowego

Radosław Andrzej Konieczny1,B,C,D, Wojciech Różański1,B,C, Elżbieta Poniewierka2,A,E,F, Radosław Kempiński2,C,E,F, Katarzyna Neubauer3,E,F

1 Clinic of Gastroenterology and Hepatology, Jan Mikulicz-Radecki University Teaching Hospital, Wrocław, Poland

2 Department and Clinic of Gastroenterology and Hepatology, Wroclaw Medical University, Wrocław, Poland

3 Division of Dietetics, Department and Clinic of Gastroenterology and Hepatology, Wroclaw Medical University, Wrocław, Poland

Abstract

Studies of the role of bile acids have been conducted for many years. Thanks to constantly improving research methods, the systemic action of bile acids has been evaluated with increasing precision. It is now believed that disturbances in the synthesis, transformation and transport of bile acids may be one of the causes of functional bowel disorders. Constant renewal of the bile acid pool and secretion of bile acids into the gastrointestinal lumen is regulated by feedback loops. Bile acids play the role of signaling molecules by binding to the appropriate receptors and influencing the synthesis of other signaling molecules at the cellular level. Disturbances of synthesis, reabsorption and changes in the proportion of bile acids all lead to motor dysfunction and intestinal secretion. The most common symptoms are diarrhea, constipation or irritable bowel syndrome. This article discusses the basic issues of the synthesis and circulation of bile acids. On the basis of in vitro and in vivo findings, an outline of the regulation of physiological processes and the pathophysiology of diarrhea and constipation in the context of bile acids is presented. Understanding the role of bile acids in the pathophysiology of functional intestinal diseases creates new therapeutic options for patients suffering from functional diarrhea or constipation.

Streszczenie

Badania dotyczące roli kwasów żółciowych są prowadzone od wielu lat. Dzięki stale udoskonalanym metodom badawczym udaje się coraz precyzyjniej oceniać działanie systemowe kwasów żółciowych. Obecnie uważa się, że zaburzenia syntezy, przemian i transportu kwasów żółciowych mogą być jedną z przyczyn czynnościowych zaburzeń jelit. Stałe odnawianie puli kwasów żółciowych oraz ich sekrecja do światła przewodu pokarmowego podlegają regulacji na zasadzie sprzężeń zwrotnych. Kwasy żółciowe pełnią rolę cząsteczek sygnałowych, wiążąc się z odpowiednimi receptorami i wpływając na syntezę innych cząsteczek sygnałowych na poziomie komórkowym. Zarówno zaburzenia syntezy, reabsorpcji, jak i zmiany proporcji kwasów żółciowych prowadzą do zaburzeń motoryki oraz sekrecji jelitowej. Najczęstszymi objawami są biegunka, zaparcie lub zespół jelita nadwrażliwego. W artykule omówiono podstawowe zagadnienia dotyczące syntezy oraz krążenia kwasów żółciowych. Na podstawie wniosków z badań in vitro oraz in vivo przedstawiono zarys regulacji procesów fizjologicznych oraz patofizjologię możliwych przyczyn biegunki i zaparć w kontekście działania kwasów żółciowych. Poznanie roli kwasów żółciowych w patofizjologii czynnościowych chorób jelit stwarza nowe możliwości terapeutyczne dla chorych na biegunkę i zaparcia czynnościowe.

Key words

bile acids, constipation, peristalsis, diarrhea

Słowa kluczowe

kwasy żółciowe, zaparcie, biegunka, perystaltyka

Piśmiennictwo (40)

  1. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174. doi:10.1146/annurev.biochem.72.121801.161712
  2. Cheng S, Zou M, Liu Q, et al. Activation of 388 constitutive androstane receptor prevents cholesterol gallstone formation. Am J Pathol. 2017;187(4):808–818. doi:10.1016/j.ajpath.2016.12.013
  3. Gonzalez FJ. Nuclear receptor control of enterohepatic circulation. Compr Physiol. 2012;2(4):2811–2828. doi:10.1002/cphy.c120007
  4. Lapidus A, Åkerlund JE, Einarsson C. Gallbladder bile composition in patients with Crohn’s disease. World J Gastroenterol. 2006;12(1):70–74. doi:10.3748/wjg.v12.i1.70
  5. Duane WC, Adler RD, Bennion LJ, Ginsberg RL. Determination of bile acid pool size in man: A simplified method with advantages of increases precision, shortened analysis time, and decreased isotope exposure. J Lipid Res. 1975;16(2):155–158.
  6. Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. doi:10.1073/pnas.0509592103
  7. Jones S. Mini-review: Endocrine actions of fibroblast growth factor 19. Mol Pharm. 2008;5(1):42–48. doi:10.1021/mp700105z
  8. Farkkila MA, Kairemo KJ, Taavitsainen MJ, Strandberg TA, Miettinen TA. Plasma lathosterol as a screening test for bile acid malabsorption due to ileal resection: Correlation with 75SeHCAT test and faecal bile acid excretion. Clin Sci (Lond). 1996;90(4):315–319.
  9. Camilleri M, Nadeau A, Tremaine WJ, et al. Measurement of serum 7alpha-hydroxy-4-cholesten-3-one (or 7alphaC4), a surrogate test for bile acid malabsorption in health, ileal disease and irritable bowel syndrome using liquid chromatography-tandem mass spectrometry. Neurogastroenterol Motil. 2009;21(7):e734–743. doi: 10.1111/j.1365-2982.2009.01288.x
  10. Metry M, Felton J, Cheng K, et al. Attenuated accumulation of novel fluorine (19F)-labeled bile acid analogues in gallbladders of fibroblast growth factor-15 (FGF15)-deficient mice. Mol Pharm. 2018;15(11):4827–4834. doi:10.1021/acs.molpharmaceut.8b00454
  11. Bajor A, Gillberg PG, Abrahamsson H. Bile acids: Short and long term effects in the intestine. Scand J Gastroenterol. 2010;45(6):645–664. doi:10.3109/00365521003702734
  12. Setchell KD, Lawson AM, Tanida N, Sjovall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983;24(8):1085–1100.
  13. Keely SJ, Scharl MM, Bertelsen LS, Hagey LR, Barrett KE, Hofmann AF. Bile acid-induced secretion in polarized monolayers of T84 colonic epithelial cells: Structure-activity relationships. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G290–297. doi:10.1152/ajpgi.00076.2006
  14. Aldini R, Roda A, Festi D, et al. Bile acid malabsorption and bile acid diarrhea in intestinal resection. Dig Dis Sci. 1982;27(6):495–502.
  15. Conley DR, Coyne MJ, Bonorris GG, Chung A, Schoenfield LJ. Bile acid stimulation of colonic adenylate cyclase and secretion in the rabbit. Am J Dig Dis. 1976;21(6):453–458. doi:10.1007/BF01072128
  16. Camilleri M, Murphy R, Chadwick VS. Dose-related effects of chenodeoxycholic acid in the rabbit colon. Dig Dis Sci. 1980;25(6):433–438.
  17. Alrefai WA, Saksena S, Tyagi S, Gill RK, Ramaswamy K, Dudeja PK. Taurodeoxycholate modulates apical Cl-/OH exchang activity in Caco2 cells. Dig Dis Sci. 2007;52(5):1270–1278. doi:10.1007/s10620-006-9090-8
  18. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. doi: 10.1194/jlr.R500013-JLR200
  19. Hylemon PB, Harder J. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev. 1998;22(5):475–488. doi:10.1111/j.1574-6976.1998.tb00382.x
  20. Raufman JP, Zimniak P, Bartoszko-Malik A. Lithocholyltaurine interacts with cholinergic receptors on dispersed chief cells from guinea pig stomach. Am J Physiol. 1998;274(6 Pt 1):G997–1000. doi:10.1152/ajpgi.1998.274.6.G997
  21. Kirwan WO, Smith AN, Mitchell WD, Falconer JD, Eastwood MA. Bile acids and colonic motility in the rabbit and the human. Gut. 1975;16(11):894–902. doi:10.1136/gut.16.11.894
  22. Snape WJ Jr, Shiff S, Cohen S. Effect of deoxycholic acid on colonic motility in the rabbit. Am J Physiol. 1980;238(4):G321–325. doi: 10.1152/ajpgi.1980.238.4.G321
  23. Edwards CA, Brown S, Baxter AJ, Bannister JJ, Read NW. Effect of bile acid on anorectal function in man. Gut. 1989;30(3):383–386. doi: 10.1136/gut.30.3.383
  24. Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol. 2002;282(3):G443–449. doi:10.1152/ajpgi.00194.2001
  25. Odunsi S, Camilleri M, Bushiglio I, et al. Effects of chenodeoxycholic acid on gastrointestinal and colonic transit and bowel function in health volunteers. Gastroenterology. 2009;136(Suppl 1):A531. doi: 10.1016/j.cgh.2009.10.02
  26. Shiff SJ, Soloway RD, Snape WJ Jr. Mechanism of deoxycholic acid stimulation of the rabbit colon. J Clin Invest. 1982;69(4):985–992. doi:10.1172/jci110538
  27. Fernandez-Banares F, Esteve M, Salas A, et al. Systematic evaluation of the causes of chronic watery diarrhea with functional characteristics. Am J Gastroenterol. 2007;102(11):2520–2528. doi: 10.1111/j.1572-0241.2007.01438.x
  28. Sadik R, Abrahamsson H, Ung KA, Stotzer PO. Accelerated regional bowel transit and overweight shown in idiopathic bile acid malabsorption. Am J Gastroenterol. 2004;99(4):711–718. doi:10.1111/j.1572-0241.2004.04139.x
  29. Pattni S, Walters JR. Recent advances in the understanding of bile acid malabsorption. Br Med Bull. 2009;92:79–93. doi:10.1093/bmb/ldp032
  30. Camilleri M. Bile acid diarrhea: Prevalence, pathogenesis, and therapy. Gut Liver. 2015;9(3):332–339. doi:10.5009/gnl14397
  31. Vijayvargiya P, Busciglio I, Burton D, et al. Bile acid deficiency in subgroup of patients with irritable bowel syndrome with constipation based on biomarkers in serum and fecal samples. Clin Gastroenterol Hepatol. 2018;16(4):522–552. doi:10.1016/j.cgh.2017.06.039
  32. Shin A, Camilleri M, Vijayvargiya P, et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2013;11(10):1270–1275.e1. doi:10.1016/j.cgh.2013.04.020
  33. Rao AS, Wong BS, Camilleri M, et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: A pharmacodynamics and pharmacogenetic analysis. Gastroenterology. 2010;139(5):1549–1558,1558.e1. doi:10.1053/j.gastro.2010.07.052
  34. Abrahamsson H, Ostlund-Lindqvist AM, Nilsson R, Simrén M, Gillberg PG. Altered bile acid metabolism in patients with constipation-predominant irritable bowel syndrome and functional constipation. Scand J Gastroenterol. 2008;43(12):1483–1488. doi:10.1080/00365520802321212
  35. Marcus SN, Heaton KW. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile: Three inter-related factors. Gut. 1986;27(5):550–558. doi:10.1136/gut.27.5.550
  36. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–2658.
  37. Hofmann AF, Loening-Baucke V, Lavine JE, et al. Altered bile acid metabolism in childhood functional constipation: Inactivation of secretory bile acids by sulfation in a subset of patients. J Pediatr Gastroenterol Nutr. 2008;47(5):598–606. doi:10.1097/MPG.0b013e31816920a6
  38. Chey WD, Camilleri M, Chang L, et al. A randomized placebo-controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol. 2011;106(10):1803–1812. doi:10.1038/ajg.2011
  39. Acosta A, Camilleri M. Elobixibat and its potential role in chronic idiopathic constipation. Ther Adv Gastroenterol. 2014;7(4):167–175. doi:10.1177/1756283X14528269
  40. Nakajima A, Seki M, Taniguchi S. Determining an optimal clinical dose of elobixibat, a novel inhibitor of the ileal bile acid transporter, in Japanese patients with chronic constipation: A phase II, multicenter, double-blind, placebo-controlled randomized clinical trial. J Gastroenterol. 2018;53(4):525–534. doi:10.1007/s00535-017-1383-5