Pielęgniarstwo i Zdrowie Publiczne Nursing and Public Health
2019, vol. 9, nr 2, April-June, p. 107–112
doi: 10.17219/pzp/102439
Publication type: review article
Language: English
Download citation:
Bile acids and their role in functional gastrointestinal disorders
Kwasy żółciowe i ich rola w zaburzeniach czynnościowych przewodu pokarmowego
1 Clinic of Gastroenterology and Hepatology, Jan Mikulicz-Radecki University Teaching Hospital, Wrocław, Poland
2 Department and Clinic of Gastroenterology and Hepatology, Wroclaw Medical University, Wrocław, Poland
3 Division of Dietetics, Department and Clinic of Gastroenterology and Hepatology, Wroclaw Medical University, Wrocław, Poland
Abstract
Studies of the role of bile acids have been conducted for many years. Thanks to constantly improving research methods, the systemic action of bile acids has been evaluated with increasing precision. It is now believed that disturbances in the synthesis, transformation and transport of bile acids may be one of the causes of functional bowel disorders. Constant renewal of the bile acid pool and secretion of bile acids into the gastrointestinal lumen is regulated by feedback loops. Bile acids play the role of signaling molecules by binding to the appropriate receptors and influencing the synthesis of other signaling molecules at the cellular level. Disturbances of synthesis, reabsorption and changes in the proportion of bile acids all lead to motor dysfunction and intestinal secretion. The most common symptoms are diarrhea, constipation or irritable bowel syndrome. This article discusses the basic issues of the synthesis and circulation of bile acids. On the basis of in vitro and in vivo findings, an outline of the regulation of physiological processes and the pathophysiology of diarrhea and constipation in the context of bile acids is presented. Understanding the role of bile acids in the pathophysiology of functional intestinal diseases creates new therapeutic options for patients suffering from functional diarrhea or constipation.
Streszczenie
Badania dotyczące roli kwasów żółciowych są prowadzone od wielu lat. Dzięki stale udoskonalanym metodom badawczym udaje się coraz precyzyjniej oceniać działanie systemowe kwasów żółciowych. Obecnie uważa się, że zaburzenia syntezy, przemian i transportu kwasów żółciowych mogą być jedną z przyczyn czynnościowych zaburzeń jelit. Stałe odnawianie puli kwasów żółciowych oraz ich sekrecja do światła przewodu pokarmowego podlegają regulacji na zasadzie sprzężeń zwrotnych. Kwasy żółciowe pełnią rolę cząsteczek sygnałowych, wiążąc się z odpowiednimi receptorami i wpływając na syntezę innych cząsteczek sygnałowych na poziomie komórkowym. Zarówno zaburzenia syntezy, reabsorpcji, jak i zmiany proporcji kwasów żółciowych prowadzą do zaburzeń motoryki oraz sekrecji jelitowej. Najczęstszymi objawami są biegunka, zaparcie lub zespół jelita nadwrażliwego. W artykule omówiono podstawowe zagadnienia dotyczące syntezy oraz krążenia kwasów żółciowych. Na podstawie wniosków z badań in vitro oraz in vivo przedstawiono zarys regulacji procesów fizjologicznych oraz patofizjologię możliwych przyczyn biegunki i zaparć w kontekście działania kwasów żółciowych. Poznanie roli kwasów żółciowych w patofizjologii czynnościowych chorób jelit stwarza nowe możliwości terapeutyczne dla chorych na biegunkę i zaparcia czynnościowe.
Key words
bile acids, constipation, peristalsis, diarrhea
Słowa kluczowe
kwasy żółciowe, zaparcie, biegunka, perystaltyka
References (40)
- Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174. doi:10.1146/annurev.biochem.72.121801.161712
- Cheng S, Zou M, Liu Q, et al. Activation of 388 constitutive androstane receptor prevents cholesterol gallstone formation. Am J Pathol. 2017;187(4):808–818. doi:10.1016/j.ajpath.2016.12.013
- Gonzalez FJ. Nuclear receptor control of enterohepatic circulation. Compr Physiol. 2012;2(4):2811–2828. doi:10.1002/cphy.c120007
- Lapidus A, Åkerlund JE, Einarsson C. Gallbladder bile composition in patients with Crohn’s disease. World J Gastroenterol. 2006;12(1):70–74. doi:10.3748/wjg.v12.i1.70
- Duane WC, Adler RD, Bennion LJ, Ginsberg RL. Determination of bile acid pool size in man: A simplified method with advantages of increases precision, shortened analysis time, and decreased isotope exposure. J Lipid Res. 1975;16(2):155–158.
- Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. doi:10.1073/pnas.0509592103
- Jones S. Mini-review: Endocrine actions of fibroblast growth factor 19. Mol Pharm. 2008;5(1):42–48. doi:10.1021/mp700105z
- Farkkila MA, Kairemo KJ, Taavitsainen MJ, Strandberg TA, Miettinen TA. Plasma lathosterol as a screening test for bile acid malabsorption due to ileal resection: Correlation with 75SeHCAT test and faecal bile acid excretion. Clin Sci (Lond). 1996;90(4):315–319.
- Camilleri M, Nadeau A, Tremaine WJ, et al. Measurement of serum 7alpha-hydroxy-4-cholesten-3-one (or 7alphaC4), a surrogate test for bile acid malabsorption in health, ileal disease and irritable bowel syndrome using liquid chromatography-tandem mass spectrometry. Neurogastroenterol Motil. 2009;21(7):e734–743. doi: 10.1111/j.1365-2982.2009.01288.x
- Metry M, Felton J, Cheng K, et al. Attenuated accumulation of novel fluorine (19F)-labeled bile acid analogues in gallbladders of fibroblast growth factor-15 (FGF15)-deficient mice. Mol Pharm. 2018;15(11):4827–4834. doi:10.1021/acs.molpharmaceut.8b00454
- Bajor A, Gillberg PG, Abrahamsson H. Bile acids: Short and long term effects in the intestine. Scand J Gastroenterol. 2010;45(6):645–664. doi:10.3109/00365521003702734
- Setchell KD, Lawson AM, Tanida N, Sjovall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983;24(8):1085–1100.
- Keely SJ, Scharl MM, Bertelsen LS, Hagey LR, Barrett KE, Hofmann AF. Bile acid-induced secretion in polarized monolayers of T84 colonic epithelial cells: Structure-activity relationships. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G290–297. doi:10.1152/ajpgi.00076.2006
- Aldini R, Roda A, Festi D, et al. Bile acid malabsorption and bile acid diarrhea in intestinal resection. Dig Dis Sci. 1982;27(6):495–502.
- Conley DR, Coyne MJ, Bonorris GG, Chung A, Schoenfield LJ. Bile acid stimulation of colonic adenylate cyclase and secretion in the rabbit. Am J Dig Dis. 1976;21(6):453–458. doi:10.1007/BF01072128
- Camilleri M, Murphy R, Chadwick VS. Dose-related effects of chenodeoxycholic acid in the rabbit colon. Dig Dis Sci. 1980;25(6):433–438.
- Alrefai WA, Saksena S, Tyagi S, Gill RK, Ramaswamy K, Dudeja PK. Taurodeoxycholate modulates apical Cl-/OH exchang activity in Caco2 cells. Dig Dis Sci. 2007;52(5):1270–1278. doi:10.1007/s10620-006-9090-8
- Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. doi: 10.1194/jlr.R500013-JLR200
- Hylemon PB, Harder J. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev. 1998;22(5):475–488. doi:10.1111/j.1574-6976.1998.tb00382.x
- Raufman JP, Zimniak P, Bartoszko-Malik A. Lithocholyltaurine interacts with cholinergic receptors on dispersed chief cells from guinea pig stomach. Am J Physiol. 1998;274(6 Pt 1):G997–1000. doi:10.1152/ajpgi.1998.274.6.G997
- Kirwan WO, Smith AN, Mitchell WD, Falconer JD, Eastwood MA. Bile acids and colonic motility in the rabbit and the human. Gut. 1975;16(11):894–902. doi:10.1136/gut.16.11.894
- Snape WJ Jr, Shiff S, Cohen S. Effect of deoxycholic acid on colonic motility in the rabbit. Am J Physiol. 1980;238(4):G321–325. doi: 10.1152/ajpgi.1980.238.4.G321
- Edwards CA, Brown S, Baxter AJ, Bannister JJ, Read NW. Effect of bile acid on anorectal function in man. Gut. 1989;30(3):383–386. doi: 10.1136/gut.30.3.383
- Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol. 2002;282(3):G443–449. doi:10.1152/ajpgi.00194.2001
- Odunsi S, Camilleri M, Bushiglio I, et al. Effects of chenodeoxycholic acid on gastrointestinal and colonic transit and bowel function in health volunteers. Gastroenterology. 2009;136(Suppl 1):A531. doi: 10.1016/j.cgh.2009.10.02
- Shiff SJ, Soloway RD, Snape WJ Jr. Mechanism of deoxycholic acid stimulation of the rabbit colon. J Clin Invest. 1982;69(4):985–992. doi:10.1172/jci110538
- Fernandez-Banares F, Esteve M, Salas A, et al. Systematic evaluation of the causes of chronic watery diarrhea with functional characteristics. Am J Gastroenterol. 2007;102(11):2520–2528. doi: 10.1111/j.1572-0241.2007.01438.x
- Sadik R, Abrahamsson H, Ung KA, Stotzer PO. Accelerated regional bowel transit and overweight shown in idiopathic bile acid malabsorption. Am J Gastroenterol. 2004;99(4):711–718. doi:10.1111/j.1572-0241.2004.04139.x
- Pattni S, Walters JR. Recent advances in the understanding of bile acid malabsorption. Br Med Bull. 2009;92:79–93. doi:10.1093/bmb/ldp032
- Camilleri M. Bile acid diarrhea: Prevalence, pathogenesis, and therapy. Gut Liver. 2015;9(3):332–339. doi:10.5009/gnl14397
- Vijayvargiya P, Busciglio I, Burton D, et al. Bile acid deficiency in subgroup of patients with irritable bowel syndrome with constipation based on biomarkers in serum and fecal samples. Clin Gastroenterol Hepatol. 2018;16(4):522–552. doi:10.1016/j.cgh.2017.06.039
- Shin A, Camilleri M, Vijayvargiya P, et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2013;11(10):1270–1275.e1. doi:10.1016/j.cgh.2013.04.020
- Rao AS, Wong BS, Camilleri M, et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: A pharmacodynamics and pharmacogenetic analysis. Gastroenterology. 2010;139(5):1549–1558,1558.e1. doi:10.1053/j.gastro.2010.07.052
- Abrahamsson H, Ostlund-Lindqvist AM, Nilsson R, Simrén M, Gillberg PG. Altered bile acid metabolism in patients with constipation-predominant irritable bowel syndrome and functional constipation. Scand J Gastroenterol. 2008;43(12):1483–1488. doi:10.1080/00365520802321212
- Marcus SN, Heaton KW. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile: Three inter-related factors. Gut. 1986;27(5):550–558. doi:10.1136/gut.27.5.550
- Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–2658.
- Hofmann AF, Loening-Baucke V, Lavine JE, et al. Altered bile acid metabolism in childhood functional constipation: Inactivation of secretory bile acids by sulfation in a subset of patients. J Pediatr Gastroenterol Nutr. 2008;47(5):598–606. doi:10.1097/MPG.0b013e31816920a6
- Chey WD, Camilleri M, Chang L, et al. A randomized placebo-controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol. 2011;106(10):1803–1812. doi:10.1038/ajg.2011
- Acosta A, Camilleri M. Elobixibat and its potential role in chronic idiopathic constipation. Ther Adv Gastroenterol. 2014;7(4):167–175. doi:10.1177/1756283X14528269
- Nakajima A, Seki M, Taniguchi S. Determining an optimal clinical dose of elobixibat, a novel inhibitor of the ileal bile acid transporter, in Japanese patients with chronic constipation: A phase II, multicenter, double-blind, placebo-controlled randomized clinical trial. J Gastroenterol. 2018;53(4):525–534. doi:10.1007/s00535-017-1383-5




